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EXECUTIVE SUMMARY

Economic or financial causes have led to closure or announced early 
retirement of several US nuclear reactors in the last five years. The published 
report “Economic and Market Challenges Facing the U.S. Nuclear Commercial 
Fleet – Cost and Revenue Study” by Idaho National Laboratory identified 63 of 
the 79 studied nuclear power plants (NPPs) lost money in the year 2016. The 
revenue gap analysis performed in the study also concluded that additional 
revenue is required to return most of these nuclear power units to profitable 
operations. This can be achieved by reducing operation and maintenance (O&M) 
costs that accounts for about 70% of total operating expenditures for an NPP. The 
Light Water Reactor Sustainability (LWRS) Program conducts research and 
development, sponsored by the US Department of Energy, that provides a 
technical foundation for licensing and managing the long-term safe and 
economical operation of current nuclear power plants, utilizing the unique 
capabilities of the national laboratory system. Reduction in O&M costs aligns 
with the LWRS program’s mission of providing science-based solutions to the 
nuclear industry to implement technologies and methodologies for safe, efficient, 
economical, and long-term operation.

The requirements for U.S. nuclear power generation sites to maintain a large 
on-site physical security force, implemented after the terrorist attacks on 
September 11, 2001, rank high for related plant operational costs. The cost of 
maintaining the current physical security posture is approximately ten percent of 
the overall O&M costs for the commercial NPPs. The goal of this LWRS 
Physical Security Initiative is to develop methods, tools, and technologies and 
generate the technical basis for an optimized plant security posture.  The 
conservatisms built into the security posture can be targeted in order to reduce 
security costs while still ensuring adequate security and operational safety.

This report summarizes the initial efforts undertaken under the LWRS 
Physical Security Initiative to review current physical security postures and 
provide preliminary recommendations for optimization. The first section 
describes the current physical security posture of a typical US commercial 
nuclear power plant, illustrating the regulatory requirements and their impact on 
the technology and personnel currently employed as part of physical security of a 
nuclear power plant. The second section illustrates the challenges facing the 
physical security regime that were identified during this effort, including specific 
details of regulatory, technological and other challenges that, if addressed, would 
result in near-term and long-term relief to the nuclear industry. The final section 
outlines the recommendations for deployment of advanced solutions in order to 
address the identified challenges. The major recommendations are to develop a 
methodology to implement risk-informed physical security and a measure of 
effectiveness to provide the technical basis for an optimized plant security 
posture that leverages automated weapon systems and advanced sensors and 
instrumentations.
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CURRENT CHALLENGES, CONSTRAINTS AND 
RECOMMENDATIONS FOR REDUCING COST OF 

PHYSICAL SECURITY AT U.S. COMMERCIAL 
NUCLEAR POWER PLANTS

1. INTRODUCTION

1.1 General

1.1.1 Overview

Economic or financial causes have led to closure or announced early retirement of several US nuclear 
reactors in the last five years. The published report “Economic and Market Challenges Facing the U.S. 
Nuclear Commercial Fleet – Cost and Revenue Study” by Idaho National Laboratory identified 63 of the 
79 studied nuclear power plants (NPPs) lost money in the year 2016 [1]. The revenue gap analysis 
performed in the study also concluded that additional revenue is required to return most of these nuclear 
power units to profitable operations. This can be achieved by reducing operation and maintenance (O&M) 
costs that accounts for about 70% of total operating expenditures for an NPP [1]. The Light Water 
Reactor Sustainability (LWRS) Program conducts research and development, sponsored by the US 
Department of Energy, that provides a technical foundation for licensing and managing the long-term safe 
and economical operation of current nuclear power plants, utilizing the unique capabilities of the national 
laboratory system. Reduction in O&M costs aligns with the LWRS program’s mission of providing 
science-based solutions to the nuclear industry to implement technologies and methodologies for safe, 
efficient, economical, and long-term operation.

The requirements for U.S. nuclear power generation sites to maintain a large on-site physical security 
force, implemented after the terrorist attacks on September 11, 2001, rank high for related plant 
operational costs [2]. The cost of maintaining the current physical security posture is approximately ten 
percent of the overall O&M costs for the commercial NPPs. The goal of this LWRS Physical Security 
Initiative is to develop methods, tools, and technologies and generate the technical basis for an optimized 
plant security posture.  The conservatisms built into the security posture can be targeted in order to reduce 
security costs while still ensuring adequate security and operational safety.

This report documents the technical review, insights, feedback, and recommendations for evaluating 
the current challenges and constraints associated with the physical security regime in the domestic light 
water reactor nuclear industry. As part of this initial assessment, investigations into areas of 
improvements for an effective security program are conducted. Additionally, an initial evaluation of 
existing validated methods that can be used to implement an updated and optimized physical security 
regime at domestic nuclear power plants (NPPs) is discussed. Section 1 provides an overview of the 
current physical security posture of U.S. commercial NPPs. Section 2 describes the identified challenges 
faced by the physical security. Section 3 discusses future work that can be performed to address the 
identified challenges.

1.1.2 LWRS Program Physical Security Initiative

This Department of Energy (DOE) Office of Nuclear Energy (DOE-NE) Light Water Reactor 
Sustainability (LWRS) Program effort seeks to create tools, methods, and technologies that will:

 Apply aspects of risk-informed techniques for physical security decisions and activities to account for 
a dynamic adversary

 Apply advanced modeling and simulation tools to better inform physical security posture



2

 Assess benefits from proposed enhancements, novel mitigation strategies, and potential changes to 
regulations

The primary deliverables for the DOE-NE LWRS Program Physical Security Initiative are to:

 Validate methods that can be used to implement an updated physical security regime and optimize the 
physical security at domestic NPPs

 Develop tools that create a robust risk-informed technical basis for physical security decisions

 Create potential security architectures that incorporate technology to optimize human in-the-loop 
activities 

 Implement results of this initiative into national consensus standards. 

The intent of the LWRS Physical Security Initiative is to develop methods, tools, and technologies and 
generate recommendations that provide the technical basis for an optimized plant security posture. This 
could consider reducing conservatisms in that posture, in order to reduce security costs for the nuclear 
industry while ensuring adequate physical security. The LWRS Physical Security Initiative will analyze 
the existing physical security regime (regulations, personnel, technologies, etc.) and current best fleet 
practices, and compare/contrast insights derived from this activity with alternatives and methods that 
leverage advanced modeling and simulation, modern technologies, and other advanced techniques to 
enhance approaches for domestic NPP physical security.

1.2 Regulatory Requirement

10 CFR 73, “Physical Protection of Plants and Materials,” [3] prescribes requirements for the 
establishment and maintenance of a physical protection system (PPS) that will have capabilities for the 
protection of special nuclear material (SNM) at fixed sites and in transit and of NPPs in which SNM is 
used. 10 CFR 73.55, “Requirements for Physical Protection of Licensed Activities in Nuclear Power 
Reactors Against Radiological Sabotage,” [4] requires each nuclear power reactor licensee to implement 
the requirements of 10 CFR 73.55 through its U.S. Nuclear Regulatory Commission (NRC)-approved 
physical security plan, training and qualification plan, safeguards contingency plan, and cyber security 
plan referred to collectively hereafter as “security plans.” The requirements of 10 CFR 73.55 are intended 
to establish and maintain a physical protection program that provides reasonable assurance that activities 
involving SNM are not contrary to the common defense and security and do not constitute an 
unreasonable risk to public health and safety. This includes the ability to protect against the design basis 
threat of radiological sabotage (i.e., significant core damage and spent fuel sabotage). The security plans 
describe how the 10 CFR 73.55 requirements will be implemented through the establishment and 
maintenance of a security organization, use of security equipment and technology, training and 
qualification of security personnel, implementation of predetermined response plans and strategies, and 
protection of digital computer and communication systems and networks. The regulatory analysis in this 
report will focus on physical security requirements that would benefit from optimization of current 
physical security posture that would potentially reduce security costs for the nuclear industry.

1.2.1 Physical Security Requirements

The nuclear power reactor licensee is responsible for maintaining the onsite physical protection 
program in accordance with NRC regulations through the implementation of security plans and written 
security implementing procedures. The design of the physical protection program is focused on a series of 
target sets that require protection. A critical element of the security plan is the need to demonstrate the 
ability to meet requirements including the ability of armed and unarmed personnel to perform assigned 
duties and responsibilities required by the security plans and procedures. That, in turn, leads to 
development and implementation of a training and qualification program (in accordance with 
10 CFR 73.55, Appendix B, Section VI) along with a performance evaluation program (10 CFR 73.55, 
Appendix B) to ensure the effectiveness of the licensee’s armed and unarmed personnel.
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1.2.2 Other Related Security Requirements

In addition to the physical security requirements, the licensee’s security plans include details 
describing the following related security topics:

 The requirements for the access authorization program as stipulated in 10 CFR 73.56, “Personnel 
Access Authorization Requirements for Nuclear Power Plants” [5].

 A Safeguards Contingency Plan that describes how the criteria set forth in Appendix C, Section II, 
“Licensee Safeguards Contingency Plans,” of part 73 will be implemented [6].

 A Cyber Security Plan that describes how the criteria set forth in 10 CFR 73.54, “Protection of Digital 
Computer and Communication Systems and Networks,” will be implemented [7].

1.3 Current Physical Security Posture 

While the U.S. commercial nuclear power industry is among the most robust and well protected 
critical infrastructures in the world, increased costs of regulation in nuclear security since the terrorist 
attacks of September 11, 2001 threaten the long-term operation and future of the existing fleets. 
Maintaining security of commercial NPPs to protect against deliberate acts of terrorism has always been a 
concern but was significantly elevated to a national security issue following the 9/11 attacks [2]. NRC and 
industry approach to maintaining effective security (see Figure 1) at a plant includes various security 
programs, each with its own individual objectives that when combined provide a holistic approach to 
maintaining effective security of the plant. There has been a continued buildup within these various 
security programs for commercial nuclear power producing what is widely considered to be the most 
robustly fortified and protected commercial critical infrastructure in the world. Although it’s been 
seventeen years since the 9/11 attacks, security at NPPs remains an important concern for NRC, the 
commercial nuclear power industry, and the nation. Addressing this concern has come at a very high cost 
for the nuclear power industry that is extremely difficult to sustain in the current energy situation 
impacting our electricity generation, particularly in consideration of the recent and announced plant
shutdowns the nation has continued to see over the past several years. If commercial nuclear power 
generation is to be sustained within the United States, an optimized plant physical security posture is 
needed that will reduce conservatisms in that posture and potentially reduce security costs for the nuclear 
industry while meeting the requirements of 10 CFR 73 [3].

1.3.1 Perimeter Intrusion Detection and Assessment System

The perimeter intrusion detection and assessment system (PIDAS) is the system at a nuclear power 
plant that is used for ensuring protection and safety of the several areas within the plant [8]. NRC defines 
four key areas within a nuclear power plant as follows:

Exclusion Area: The exclusion area is the area in which the licensee has the authority to determine all 
activities including exclusion or removal of personnel and property of the area. The licensee may or may 
not have fences, guard posts or PIDAS for the exclusion area.

Protected Area: The protected area is an area within the exclusion area encompassed by physical 
barriers, such as one or more chain-link fences. The protected area is primarily protected by the PIDAS 
and access to protected area would required authorization.

Vital Area: Vital areas are located within protected areas and have additional barriers and alarms to 
protect vital equipment. Additional authorization is required for access to vital areas.

Material Access Area: Material access area is similar to vital areas but control access to forms of 
special nuclear material for which protection against theft and diversion is required. The physical 
protection of this area is more stringent than that of vital area.
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The PIDAS is a sophisticated and complex system along the fence line of protected area of a nuclear 
power plant that consists of intrusion sensors, alarm system, alarm communication system, video 
cameras, alarm and video display, communication system and personnel. The goal of PIDAS is fast and 
accurate detection of an intrusion attempt, both intentional-by an adversary, or unintentional-by a stray 
animal etc. The process of detection is complete only after an accurate assessment of the type and 
magnitude of the intrusion. Appendix A provides a review of the features and characteristics of different 
PIDAS technologies [8].

1.3.2 Security Officers, Roving Patrol, and Other Personnel

10 CFR 73.55(d)(1) states, “The licensee shall establish and maintain a security organization that is 
designed, staffed, trained, qualified, and equipped to implement the physical protection program in 
accordance with the requirements of this section” [5]. NRC security requirements for commercial 
operating nuclear sites increased exponentially following the 9/11 terrorist attacks, resulting in a 
significant increase of onsite response force personnel across the nuclear industry. The requirements for 
U.S. nuclear power generation sites to maintain a large onsite physical security force continues to rank 
high for related NPP operational costs. In referring to a plant’s response force, this includes the minimum 
number of armed responders as required in 10 CFR 73 and security officers tasked with assigned duties, 
such as stationary observation/surveillance posts, foot-patrol, roving vehicle patrols, compensatory posts, 
and other duties as required [4]. The nuclear industry is need to pursue an optimized plant security posture 
that considers efficiencies and innovative technologies to reduce costs while meeting security 
requirements.

1.4 Force-on-force Inspection

10 CFR 73.55(k)(1), “The licensee shall establish and maintain at all times, properly trained, qualified 
and equipped personnel required to interdict and neutralize threats up to and including the design basis 
threat of radiological sabotage as defined in § 73.1, to prevent significant core damage and spent fuel 
sabotage” [5].

NRC, as part of its comprehensive security program, has regularly carried out FoF exercises at 
operating NPPs since 1991. FoF security exercises were suspended after the September 11, 2001, attacks 
because the conduct of such exercises would have been a significant distraction to site security forces 
which were at NRC’s highest level of alert. In July 2002, NRC reinstated the table-top component of FoF 
exercises to evaluate the site’s protective strategy against the enhanced adversary force capabilities.

In February 2003, NRC established an Expanded FoF (EFOF) exercise pilot program. The full 
exercise, which included tabletop and FoF exercises, was conducted over a period of several days. First, 
NRC security, emergency preparedness and operations specialists conducted table-top exercises in which 
they evaluated the effectiveness of site security plans against a series of attack scenarios. The role of 
Federal, State, and local law enforcement and emergency planning officials was also discussed in this 
phase of the exercise. Exercise coordinators learned the number of defenders, their protective positions 
and their protective strategies. In the second phase, armed with information from the table-tops, and with 
information gathered prior to the table-tops, detailed plans were made for a number of commando-style 
attacks seeking to probe for potential deficiencies in the protective strategy. A CAF carried out these 
attacks. The aim of the site’s protective strategy was to protect target sets that would prevent radiological 
sabotage and protect the health and safety of the public.

From March 2004, through October 2004 the transitional FoF program was implemented with the 
following objectives:

 To evaluate the process and scope of FoF exercises, potential adjustments to the Interim 
Compensatory Measures (ICM), and other significant physical security improvements prior to 
resuming full scale FoF exercises
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 To evaluate sites’ capabilities to protect against the revised DBT

 To identify generic power reactor site vulnerabilities

NRC reinstated the FoF process in November 2004. The objectives for this process as stated in NRC 
Inspection Procedure 71130.03 are:

1. To verify and assess the ability of sites’ physical protective systems and security organizations to 
provide high assurance that activities involving SNM are not inimical to the common defense and 
security of the facilities, and do not constitute an unreasonable risk to public health and safety. 

2. To verify and assess the effectiveness of the sites’ implementation of their protective strategies in 
accordance with NRC-approved plans and related implementation procedures, regulatory 
requirements, and any other applicable NRC requirements such as orders or confirmatory action 
letters. 

3. To assess each site’s protective strategy to ensure that it has been appropriately developed, is being 
effectively implemented, and provides high assurance of protecting target set equipment and critical 
personnel from the DBT. 

4. To assess the site’s capabilities relative to conducting a FoF exercise.

5. To assess the site’s conduct of the Emergency Preparedness (EP) portion of the FoF exercise, 
including the adequacy of actions to integrate security, plant operations and emergency response, and 
the site’s critique process to identify and correct EP weaknesses.

Figure 1. Components of security at a typical U.S. commercial NPP.
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2. CHALLENGES

2.1 Regulatory Challenges

Maintaining regulatory certainty and predictability is key for the nuclear industry to move toward an 
optimized and more efficient security posture. From the industry perspective, maintaining certainty and 
predictability within regulation is fundamental so that clear guidance is in place to facilitate the industry’s
efforts to innovate and implement transformational changes that are needed for commercial nuclear power 
generation to be sustained.

The NRC staff has recognized the need for transformational changes to NRC’s regulatory framework, 
culture, and infrastructure to further enhance effectiveness, efficiency, and agility. In SECY-18-0060, 
“Achieving Modern Risk-Informed Regulation,” [9] the staff noted:

“Either we embrace change in the industry or we will, through the use of dated, inflexible, and 
inefficient regulatory approaches, be an unnecessary barrier to technology advances.

The staff’s recommendations are a recognition that as the NRC’s regulatory programs evolve, the 
agency must accept a greater degree of risk and uncertainty in areas of low safety or risk significance 
as the staff appropriately balances the regulatory principles of reliability, clarity, and efficiency.”

Concerning physical security, there are several challenges that need to be overcome for 
transformational change to occur. An NRC-approved and standardized methodology for risk-informing 
specific aspects of physical security should be established to assist licensees in providing NRC with the 
technical basis needed to implement optimized, innovative changes needed by the existing fleet to sustain 
commercial nuclear power generation. Risk-informing criteria and processes should reflect realism: 
performance-based approaches and data are preferred; approaches will likely use qualitative and semi-
quantitative analyses as quantitative data may not be available or feasible to produce. Such a standardized 
methodology will enable commercial nuclear power plants to gain efficiencies through flexible post 
staffing and rotation requirements; gain efficiencies by basing security equipment surveillance/testing 
activities on performance and reliability.

2.2 Current Labor-intensive Posture

Domestic nuclear power generation faces increasing economic pressures, in part, by post-Fukushima 
regulatory requirements, an increase in subsidized renewable energy sources, and current low-cost natural 
gas, but mainly as result of additional NRC physical security requirements for U.S. NPPs following the 
9/11 terrorist attacks. The cumulative impacts of additional NRC security requirements have forced NPPs 
to maintain a large onsite physical security force, which ranks among the highest related NPP operational 
costs industry wide. U.S. NPPs are seeking novel physical security methods and technologies to reduce 
cost in order to sustain nuclear power generation in the United States. 

DOE national laboratories have extensively studied various physical security configurations that 
couple detect, delay, and response attributes to regulatory-required physical security postures. The LWRS 
Program physical security initiative initially seeks to assess benefits (e.g., reduced costs, margins in 
regulation compliance) from proposed enhancements, novel mitigation strategies, and potential changes 
to regulations, while re-evaluating adequate physical security. The long-term efforts are intended to 
provide the technical basis to enable regulatory change of 10 CFR 73.55 minimum security staffing 
requirements [4]. These long-term efforts are intended to meet the overall vision of enabling a reduction 
in 10 CFR 73.55 minimum security staffing requirements for at-power operations [4]. Other modes of 
operation could require higher or lower staffing limits and will be fully evaluated.
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2.3 Technological Challenges

2.3.1 Sensor Performance and Probability of Detection

Sensor performance is made up of two elements: probability of detection and the sensor’s 
vulnerability to defeat. Probability of detection (Pd) is the likelihood of detecting an adversary within the 
area covered by a particular sensor. Sensors vulnerability to defeat (Vs) is the possibility that an adversary 
could successfully defeat the sensor. They are related by the equation Pd ≈ 1/�� [8]. All sensors can be 
defeated given the proper expertise, time and tools. With this in mind sensor selection is critical based on 
the area to be protected and the type of threat that would enter the area. Appendix A shows a comparison 
of different types of sensors features, advantages/disadvantages and maintenance skill level requirements. 
With proper sensor selection Vs is low. This coupled with proper physical installation, correct signal 
interfacing to an alarm assessment system and a maintenance plan the initial Pd level is high, usually 
above 95%. Other factors affecting sensor performance are testing and nuisance or false alarms.

2.3.2 Testing and Maintenance Requirements

Testing of an intrusion detection system device or subsystem consists of an acceptance test, 
performance test, and ongoing operability testing. Acceptance testing ensures that the installation matches 
the original design, which includes an inspection of physical installation (mounting attachments, spacing, 
protection of wiring in conduit and other manufacturer’s requirements), correct signal and power 
connections, and initial performance test to measure and establish the level of performance. This is the 
most important step for any intrusion detection system as it will directly determine the cost of future 
testing and maintenance.

Performance testing is performed usually on a yearly basis, in conjunction with scheduled 
maintenance or after a system upgrade, to measure the level of performance to ensure the intrusion 
detection system device or subsystem has the same level of performance determiner by the acceptance 
test.

Ongoing operability testing provides a level of reasonable assurance that the intrusion detection 
system device or subsystem detects the threat it was designed for. Various methods have been devised for 
testing based on manufacturer’s recommendations and the combined fleet experience in conducting tests. 
The frequency of testing is based on identifying system degradation due to manufacturer’s mean time 
between failure predictions that the system will fail to detect the threat it was designed for. These tests are 
done using a combination of maintenance and security personal. The combination of testing methods and 
frequency of testing has resulted in an increase of the amount of time devoted to operability testing with 
the results being almost always the same, the system detects the threat it was designed for. The challenge 
is in determining the right amount of operability testing and which testing methods should be used that 
will reduce the cost of operability testing and still achieve a level of reasonable assurance.

2.3.3 Nuisance Alarms and False Alarms

Nuisance alarms are any alarms that are not caused by an unauthorized entry, zone detection, or 
penetration. False alarms are alarms without an apparent cause. These erroneous alarms by an intrusion 
detection system device or subsystem results in the unnecessary response by the plant security force to 
verify the validity of the alarm. This not only wastes a valuable resource, but repeated nuisance or false 
alarms leads to a complacency posture which decreases the response time for real alarms. Also, with 
today’s stressed maintenance force, the system creating the nuisance or false alarms may be temporarily 
disabled until repairs are made. This leads to initiating compensatory measures, usually in the form of 
posting security personnel, as a substitute for the failed device, which increases cost.

The current fleet works hard to reduce nuisance or false alarms but as intrusion detection systems age 
or increase in numbers due to added security requirements, the challenge will be to reduce or eliminate 
the number of nuisance or false alarms to decrease the cost of maintenance and extra security forces.
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2.4 Measure of Effectiveness

One major roadblock to an effective risk-informed approach to physical security is the difficulty in 
measuring the effectiveness using the current evaluation process. Evaluation of current force on force 
exercises is done on a pass-fail basis. Additionally, historical data such as determined plausible scenarios 
and mitigation strategies are either not kept or only recorded by individual sites. Having graded 
measurements and historical data makes it possible to implement statistical evaluation for risk-informed 
decisions.

NRC security requirements defined in 10 CFR 73 are focused on protecting against acts of 
radiological sabotage and preventing theft or diversion of SNM. 10 CFR 73 provides a mixture of 
performance-based and prescriptive security requirements that require nuclear facilities to establish and 
maintain an onsite physical protection program that protects against the DBT and focuses on preventing 
significant core damage and spent fuel sabotage as the means of providing reasonable assurance that the 
public is not exposed to unacceptable health and safety risk.

NRC establishes the DBT based upon adversary characteristics, which are independent of the design 
features or technology of the facility. NRC requires nuclear facilities to have physical barriers, to identify 
targets, and to have a security organization with the capabilities to detect, assess, interdict and neutralize 
the DBT. It also requires nuclear facilities to have a physical security plan, a training and qualification 
plan, security contingency plans, access authorization program, insider mitigation program, and a cyber 
security plan. NPPs are required to demonstrate the effectiveness of the security organization through FoF
activities, coordinate with other onsite plans and procedures, and provide defense-in-depth through the 
integration of systems, technologies, programs, equipment, supporting processes, and implementing 
procedures. 

Nuclear facilities are permitted to propose alternative methods or approaches to meet these physical 
security requirements, long as they offer equivalent protection and meet the same intent. Exemptions may 
also be requested to address specific unique characteristics of plant design and operation. However, these 
processes are not efficient or preferred to address generic policy or technical issues.

A risk-informed approach of security requirements commensurate with the off-site radiological risk, 
including an increased reliance on the engineered features and a decreased reliance on the security 
organization’s response, is not new and offers an approach to measuring system effectiveness consistent 
with other approaches currently within NRC regulation and inspection. 10 CFR 73.25, “Performance 
capabilities for physical protection of strategic SNM in transit,” 10 CFR 73.45, “Performance capabilities 
for fixed site physical protections systems,” and 10 CFR 73.51, “Requirements for the physical protection 
of stored spent nuclear fuel and high-level radioactive waste” credit the engineered features of the designs 
and require the security response organization to detect, assess and communicate/interdict, commensurate 
with the risks these activities pose to public health and safety [10-12].

U.S. nuclear facilities have implemented and maintain very robust physical security programs; 
however, operational experience has called into question the contribution of recent security enhancements 
to overall security effectiveness. Applying a risk-informed approach to physical security programs 
addresses these questions by enabling a meaningful technical basis for measurement of the security 
effectiveness, thus allowing for the identification and prioritization of physical security measures that add 
value. This process places a much greater emphasis on protective measures that significantly contribute to 
a facility’s overall risk profile.

2.5 Force-on-Force Inspection

In order to test the effectiveness of the response force and site protective posture, NRC conducts a 
force-on-force (FoF) Inspection once every three years for each licensee. This inspection is designed to 
test the effectiveness of the site’s security posture, to include security programs, procedures, protective 
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strategy, and competency of the security force in protecting the NPP against a terrorist attack intent on 
causing radiological sabotage. The mock adversary force used by NRC and the nuclear industry to 
conduct these simulated assaults is referred to as the composite adversary force (CAF), which consists of 
security responders from the industry that have been selected to perform as a CAF team member for a 
designated period, generally not to exceed three years. The CAF conducts an assault on the plant in 
accordance with the design basis threat (DBT) criteria established for the nuclear power industry by NRC 
in consideration of terrorist activities that have occurred throughout the world or are deemed to be 
feasible. The DBT establishes the weapons, equipment, knowledge, capabilities, and level of training and 
tactical expertise the CAF may use in developing scenarios used to conduct a simulated attack on the 
plant. The DBT is also used by NRC and the nuclear industry to determine the overall level of security 
required to effectively protect a plant. NRC utilizes an FoF inspection team and a significance 
determination process (SDP) to evaluate the licensee’s security posture and performance during the FoF 
exercise. If issues in performance are identified, the NRC inspection team may issue findings based on the 
SDP and the licensee would conduct an evaluation on the cause of an issue identified during an exercise 
and implement corrective actions through internal site programs. Much of the scenarios used to conduct 
FoF exercises are based on artificialities that often serve to increase the complexity of the inspection, 
while simultaneously reducing the realism of the scenario. This process often results in an increase of 
security requirements throughout the industry without a sound technical basis for the increase in security 
posture. Examples of the types of artificialities imposed on a FoF exercise that can give the adversary 
forces an unrealistic advantage include, but are not limited to such things as:

The adversary force describing how they would breach a barrier, but not actually having to perform 
the task. Since it would be total unrealistic to have the adversary force actually destroy a barrier during 
the exercise, often, they are required to go through the steps that would be involved, then a “hold time “ is 
imposed on the exercise, and the adversary force is taken to the other side of the barrier before the 
exercise can continue. Although this is the best way in which the exercise can be conducted, it does create 
some unrealistic situations. 

Although these restrictions do insert a degree of un-realism, FoF exercises are still an extremely useful 
tool in the physical protection strategy. Restrictions that are not often noticed in modeling and 
simulations, can often be detected in FoF exercises such as; Restricted visibility due to equipment, 
material storage or vegetation; Blind spots caused by too much or too little lighting; Difficult traverses 
due to uneven surfaces or soft soil conditions. Additionally, paths and time lines can be updated in the
computer models, based on actual times observed in the FoF exercises. Bringing adversary forces form 
off site, brings a fresh perspective that can often identify vulnerabilities that the protective force had not 
considered, and finally, FoF exercises are one of the best training tools for the protective force.

In general, FoF models are quite conservative in their modelling approach. FoF models do not take 
credit or consider the various security activities and barriers that exist outside the boundary of the 
physical plant. These are numerous and substantial including protections provided by the federal, state, 
and local governments in the form of border security, active vigilance, and extensive protocols to 
coordinate responses to a diverse set of threats. It is difficult to analyze and incorporate these additional 
layers of protection. However, analyzing and taking credit for these additional elements could prove 
beneficial for accurately depicting the threat basis plants must be prepared to defend against. Within the 
physical boundary of the plants, the FoF models are also conservative in their modeling. 

The FoF models tend to model only the chance of preventing access to the facility. The modeling stops at 
the point of successful intrusion into the facility in the attack scenarios and assumes success of the 
adversary. This represents a form of conservatism in modeling, because there exists many additional 
barriers beyond the first line of defenders that help protect the plant. Additional physical barriers 
significantly slow access to the most vulnerable parts of the facility. Gaining access through multiple 
defense-in-depth physical barriers buys time for additional responders to defend the facility and recover 
the plant prior to actual harm. Thus, as the intrusion progresses, the delays posed along the way serve to 
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significantly decrease the chance of adversarial success. Moreover, the facility features numerous 
functional protection systems that render the facility less vulnerable in certain states. The transition from 
full power to safe shutdown at the plant—such as triggered when tripping the reactor—significantly 
reduces the opportunity for physical damage to the facility. The complexity of the plant and systems pose 
a further barrier to adversaries, as the requisite operational and technical knowledge to render damage 
relies on specialized training and expertise that is unlikely to be available to external parties.
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3. RECOMMENDATIONS FOR FUTURE WORK

3.1 Regulatory

3.1.1 Risk-informed Physical Security

The implementation of security systems and programs at commercial nuclear facilities are designed to 
protect one or more target sets that if damaged or lost, could result in radiological sabotage as described 
in 10 CFR 73.1 [3]. The target set and result due to a loss of a target set needs to be clearly identified, as 
does the threat defined within the DBT. The protection of nuclear materials as well as the associated 
facility and activities require security systems and programs that are designed and operated based on the 
requirements described in 10 CFR 73 [3]. These criteria should be based on an assessment of the risks and 
are an important element in the regulatory framework established in the rule. Proven compliance with the 
rule and associated guidance is an essential component of confidence in the security system and 
program’s appropriateness and effectiveness. However, it is equally important that security performance 
be assessed directly and dynamically. If a security system or program is determined to be insufficient, it is 
vital that it be corrected. This might require anything from a strengthening of site processes and 
procedures to a change in a regulatory guide or NRC-endorsed security guidance. In order to do this 
effectively and more efficiently with the objective of optimizing security posture and increasing 
efficiency, a systematic, structured, comprehensive and appropriately transparent framework is needed to 
risk-inform physical security. This framework should be implemented with the intent of using both 
quantitative and qualitative results, be consistent with requirements and guidance provided in current 
regulation and be acceptable for use by the nuclear industry through the approval or endorsement of the 
NRC.

Risk-informed physical security is intended to provide realistic models of security that capture 
potential performance shortfalls (i.e., vulnerabilities) in the security posture at a facility thereby providing 
a formal mechanism of addressing potential shortfalls through plant changes and the incorporation of 
security-related technologies. Typical risk-informed approaches use a scenario-based approach (either 
quantitative or qualitative) to describe types of events that could occur in a facility such as a NPP. 
Quantitative risk analysis then includes a quantification of the onset of the off-normal condition (called 
“initiating events”) and the plant response (including components, software, and people). Risk-informed 
physical security builds upon these ideas to incorporate security aspects such as physical systems or 
structures and the plant security personnel into scenarios that are thought to be plausible. In a modern risk 
analysis approach, the model would include understanding the reliability of plant response of physical 
security; plant operations via operators and plant staff; and systems, structures, and components. The 
model would also include integration with physical phenomena such as the primary system thermal-
hydraulics and plant operation.

Following are some of the objectives identified for a risk-informed physical security methodology in 
order to provide facilities responsible for protecting nuclear material with:

1. Risk methods to improve the alignment of the security mission to that of the safety mission of nuclear 
facilities.

2. Risk methods and approaches to establish risk-significance criteria and associated technical basis as 
applied to nuclear facility security programs.

3. Quantitative and qualitative methods that can be used to assess the effectiveness of security programs, 
as well as, the significance of security-related events originating internally or externally to the 
facility.

4. A means to assess, monitor, and observe ongoing performance trends of security functions through 
risk-informed facility-specific performance indicators.
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3.1.2 Addressing Ambiguity with Clear Guidance

The Atomic Energy Act (AEA) of 1954, as amended, which authorizes and governs NRC, does not 
specify the precise level of safety NRC must assure or define the factors NRC may or should consider in 
defining the appropriate level of safety. Instead, the AEA gives NRC broad discretion to weigh and 
balance factors, such as the state of the art of nuclear safety, the risk of accidents, the record of past 
performance, and the need for further improvement in nuclear safety, along with other matters, in 
reaching decisions. Similarly, the AEA does not define “reasonable” or “adequate.” It does, however, 
contain language such as “adequate protection,” “unreasonable risk,” “minimize danger,” and “inimical.” 
“Adequate protection” focuses rather narrowly on radiological risk, and not on something broader. 
Looking at these terms to try to determine what “reasonable assurance” means, NRC has historically 
inferred from these words that some risks may be tolerated, and that something less than absolute 
protection is required. The legal standard for licensing decisions at NRC is to have reasonable assurance 
of adequate protection, but not the elimination of all risk. NRC implements the requirements of the AEA 
through its regulations where absolute safety or zero-risk is not a requirement. As nuclear technologies 
continue to advance and utilities seek ways to further innovate and enhance efficiencies at licensed 
nuclear facilities, to include innovations in nuclear security, NRC should recognize this and NRC should
clearly define what constitutes “reasonable assurance of adequate protection” while also clearly defining 
that it is NOT an absolute assurance or guarantee. NRC taking this approach in providing clear 
expectations on what constitutes reasonable assurance of adequate protection will further provide 
clarification to both licensees and inspectors in determining at what point security requirements have been 
met in accordance with regulation. Further, it will facilitate increased regulatory certainty and 
predictability throughout inspections for licensees, as opposed to licensees’ susceptibility to regulation by 
inspector interpretation of requirements.

3.2 Automation

3.2.1 Remote-Operated Weapons

Remote-operated weapons systems (ROWSs) are used by many of the worlds militaries. Most of the 
deployed systems are designed for armored vehicles and maritime use. Systems such as the U.S. Army 
Common Remotely Operated Weapons Station are capable of handling a variety of weapons such as the 
MK-19 grenade launcher, M2 0.50 Caliber Machine Gun, M240B Machine Gun and M249 Squad 
Automatic Weapon. The system allows the operator to engage targets while remaining in the relative 
protection of the armor vehicle. The system is composed of two parts: the mount that is attached to the 
exterior of the vehicle, and the control group. The mount allows for 360-degree horizontal rotation and 
80-degree vertical rotation. Gyro-rotation provides stability and easy target tracking even while the 
system is in motion. The sight package includes a daylight video camera, a thermal camera, and a laser 
rangefinder. These capabilities allow the operator to identify and engage targets that would be difficult for 
the unaided human eye to identify. 

Although designed for military use, ROWSs have applications that could be beneficial to the 
commercial nuclear power industry. Multiple fixed ROWSs can be controlled by a single operator, 
therefore acting as a force multiplier. The operator would have almost instant response time to multiple 
points of concern. Due to their design features, ROWSs are usually much more accurate than human-
operated weapons, and the multiple sight options can allow the operator to engage targets in environments 
that would be difficult for the protective force to operate in. Finally, ROWSs allow the protective force to 
engage targets while remaining in the relative safety of the operators’ bunker thereby removing the 
operator from the “fog of battle.”

While the technology is similar, ROWSs designed for situations other than military applications, 
require special considerations. Improved robustness to a different and varied failure modes, more 
stringent safe requirements, and concerns for collateral damage are just a few of the issues that have to be 
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addressed. Sandia National Laboratory’s High Consequence, Automation and Robotics Department has 
developed an advanced command and control system for ROWSs that is addressing these concerns. This 
technology has the potential to increase the security of high consequence targets, while also reducing the 
cost of protecting those targets.

3.2.2 Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) or drones is developing rapidly, along with drone software is 
creating new opportunities for security and also threat in NPPs. High-frequency radar can detect drones 
far enough away such that countermeasures can be initiated before the drones can complete their mission. 
These radar units can be coordinated to form an electronic three-dimensional detection dome over an area. 
Defense drones are now equipped with net shooters that capture the attacking drone. The captured drone 
can be examined to identify its origin and possible attacker or, if equipped with an explosive device, 
delivered to a safe place for disposal.

Along with net shooters, small caliber guns can be outfitted on a drone and directed by a combination 
of ground radar and onboard cameras to neutralize an attacker drone. This solution works best when 
several drones (swarms) are attacking at once. Using a net shooter only captures one drone letting the rest 
of the swarm continue their mission.

Tethered drones use a cable that secures the drone above a fixed point on the ground or building roof.
This cable provides power and communication at all times to the drone. All controlling and video signals 
are transferred through this cable. The drone is able to hover indefinitely up to 200 feet above the anchor 
point and is very well suited as a substitute for a moveable camera mounted on a mast. The drone can be 
scheduled to automatically take off according to a predefined time schedule or manually. When the drone 
is not in the air and is active, it can be hidden from its surroundings and from any attacker surveillance.

Bullet detection and stopping drones can listen for a gun shot and place themselves between security 
personal and an incoming bullet. They have harden cases with special software for gunshot recognition. 

With a spectrum analyzer the control frequencies used by the drone operator to fly the drone can be 
identified. Once identified these can be jammed or spoofed to take control of the drone or force it to land 
because of a loss of control signal. GPS jammers and spoofing can disrupt a drone by sending false 
location signals to either cause the drone to lose its location and fall from the sky or redirect it in a 
different direction away from the protected area. These signals only affect a small area, so legitimate 
users of GPS signals are not affected.

As drones become more sophisticated and less expensive, they will become more incorporated into 
PPS security systems. Currently one of the most common uses for drones at the moment is in perimeter 
security. It’s significantly more cost effective, and safer for personnel, for an always-on-duty drone to 
patrol along the outskirts of a property, rather than having a security officer patrol the entire area, or 
outfitting a large perimeter with a complex deployment of cameras and sensors. Plus, there’s the bonus of 
using that flight for inspection or sensor testing purposes. Based on the technology, optics or sensors can 
be fitted on the drone to collect a host of valuable information, all at high resolution. If there does happen 
to be a security breach, a drone can usually navigate to a location significantly faster than a person could 
to assess the risk level and it can also act as a visible deterrent to intruders once it arrives at the scene. The 
use of drones can create both great security and business value while reducing cost. Drones should always 
be considered as an integral part of the overall total PPS security management, and not used as a stand-
alone security solution.

3.3 Technological

3.3.1 Advanced Sensors and Testing

The current PIDAS of a commercial nuclear power plant can gain significant efficiency and increase 
in performance by adopting advanced and digital solutions. Digital sensors are known to have higher 
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effectiveness of detection, increased sensitivity, faster response and increased life compared with the 
traditional analog devices. The digitization will result in the PIDAS of the future that also consists of a 
modernized Central Alarm Station (CAS) that houses the screens displaying video feeds from the cameras 
installed along the fence and within the plant, alarm display and communication, and access controls, all 
manned by the CAS operator. The advanced and digital PIDAS system will enhance the detection and 
assessment capabilities of not only the technology but also the CAS operators enabling the operators and 
responders to take swift and accurate actions. An example of such modernization is the computer vision 
technology that uses machine learning algorithms on the feeds from video cameras and makes decision on 
the size, type and magnitude of the intruding element. Such computer vision technology aides the CAS 
operator in differentiating between nuisance or false alarms from legitimate alarms, correctly identifying 
the intruder as human or not, armed or unarmed etc. Naturally, such technological enhancements will 
result in improved performance and lower cost of operation and maintenance. The advanced digital 
sensors that are equipped with self-diagnosing capabilities and algorithms would also address the current 
regulatory requirement of periodic performance testing.

3.4 Measure of Effectiveness

3.4.1 Quantitative Measure Instead of Success/Failure

One difficult aspect of current defensive measures is determining how effective they are in a 
quantitative manner. In order to form a robust risk-informed methodology, evaluation must be more than 
just a pass/fail and additional statistical data needs to be collected and available for site evaluation. 
Current site inspections and FoF evaluation methods result in limited data to be used by the involved 
facility let alone use by other facilities. 

Current industry probabilistic risk assessment (PRA) modelers have access to data with failure rates 
for general and specific components depending on the amount of data available. This data allows for 
accurate and detailed models for the safety of a plant given an initiating event and random failures. A 
system for similar data to be gathered from FoF exercises, guard training, operation events of physical 
protection equipment, and manufacturer and third-party testing needs to be implemented. This storage and 
data access system will provide the information needed for some direct risk-informed decision and 
provide the data needed for new technologies to perform advanced simulation and analysis for guidance 
in other risk-informed decision-making.

Advanced FoF exercise simulation methods are currently being used by facilities to compare and 
evaluate protection strategies. Facilities using these simulation tools currently use the conservative 
requirements imposed on the physical FoF exercises for building these models and results match those 
exercises very well. This is a good cross validation of both FoF exercises and the simulation tools. The 
next step is to enable the use of these tools to sample more realistic data collected from the system 
described above. This will provide probabilistic results for scenarios and an overall quantitative analysis 
of the security plan. While these tools should not be used to replace all physical FoF exercises, they 
should provide an avenue for both an optional reduction in FoF exercises and verification of equivalent 
protection with changes to protection design, equipment, and/or strategy.

An additional benefit of the data storage system is that it will allow for more efficient and effective 
site evaluations. By using the system to retain both, identified issues and accepted solutions, sites can 
know of previously identified issues, identify if those same issues exist at their facility, and stay informed
of possible solution or add new solutions that could be more secure or cost effective.

3.4.2 Integrated Modeling and Simulation of Security Events

There are more characters and systems involved in a security event than just the adversaries and the 
security detail (detection and protection), equipment. and targets. These other personnel and systems are 
critical to the outcome of a facility if initial defense measures fail weather due to beyond DBT, unrealized 
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scenario, or failure of personnel or equipment. Currently, these other items are either ignored or very 
limited in the credit they provide. This is due to either the cost and complexity to model, lack of tools, or 
regulation restrictions.

New advanced modeling and simulation tools are being used by industry to simulate FoF exercises 
involving various attack scenarios. These tools have an immediate benefit to evaluation of security 
effectiveness, but once modeled, provide an opportunity for a more comprehensive and realistic picture of 
what would happen during a security event. By combining both the FoF attack simulation with operator 
actions and the plant model, a complete picture with quantitative results can be generated. Additionally, 
this type of modeling can show how a vulnerability that may be cost prohibitive to protect against through 
manpower, could be more effective and cost beneficial through secondary equipment or an operation 
procedure change.

We propose the use of the event modeling risk assessment using linked diagrams (EMRALD), a 
dynamic risk assessment tool, that can couple with other simulation or physics tools to develop a 
modeling methodology for coupling FoF simulation with (operator and/or personnel) actions, plant 
models, and secondary equipment such as FLEX portable equipment [13].

EMRALD is a state diagram modeling tool based on three-phase discrete event simulation, where the 
next events in time are sampled [14]. This allows for fast runtimes with either close, long, or bunched 
spacing of events in time. A user interface allows for quick and easy-to-understand modeling of scenarios
and system, component, and operator actions.

Figure 2. Example of an EMRALD diagram with states, events, and actions.

Coupling with an EMRALD model can be done through both one-way and two-way coupling. One-
way coupling allows EMRALD to set up an external code or model given current states and values in 
EMRALD model, run it, and then process the results for transitioning between switch states and 
continuing the simulation. This is the most common method as it covers the needs of most scenarios and 
requires no external code modifications or programming interface to be written. When feedback loops, 
where the second application requires evaluation of its data from the initial application before continuing, 
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then two-way coupling is required and an open message protocol system is available. It is anticipated that 
initial coupling and method development will be simple and will only require one-way coupling. 

Figure 3. Coupling of tools using EMRALD.

3.4.3 Human Reliability Analysis in Security Modeling

Human reliability analysis (HRA) involves the study of human actions or inactions that contribute to 
the decrease in the safety or security of systems and functions. Humans are typically less reliable than 
hardware. Therefore, HRA is often treated as a punitive aspect of risk. It models the probability of human 
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error, with the typical outcome that the human actions increase overall system risk due to the high error 
propensity of humans. However, HRA may also model cases where human actions are likely to be 
successful and decrease the overall system risk. Crediting positive human actions is an important but 
often neglected facet of risk models, even though most modern HRA estimating methods support positive 
as well as negative effects of performance.

Most HRA methods consider performance shaping factors (PSFs) that act to change a nominal human 
error probability (HEP). This HEP is in turn considered in the fault and event tree logic alongside 
hardware reliability. PSFs include internal aspects of the human such as psychological stress, personal 
fitness, or skills. They also include external aspects that impinge upon the human such as environmental 
factors or the nature of the task. A PSF like personal fitness can be seen to have a positive effect, whereby 
it reduces the resultant HEP compared to a normal case. A well trained athlete, for example, would have 
greater agility and endurance to complete a strenuous physical task such as an assault on a guarded 
facility. The expected error rate would therefore be lower than an average, non-athlete human. 
Conversely, a human who is physically unfit will have decreased agility and endurance. In this case, it 
would be expected that the physically unfit human would be less likely than an average human to 
successfully complete the task. Their HEP would be increased to account for the negative effect of the 
fitness PSF.

In the case of physical security, the humans involved are both adversaries and defenders. There is a 
tradeoff or inverse relationship between adversaries and defenders—the success of an adversary comes at 
the cost of the failure of the defender. Conservative current modeling practices tend to give more credit to 
the success of the adversaries and less credit to the effectiveness of the response force. This may 
introduce unrealistic conservatism to the effectiveness of the defenders, effectively giving them high 
HEPs while crediting adversaries with corresponding low HEPs.

HRA for physical security relies on three pieces of modeling that are not currently being performed at 
plants:

 Accurately crediting the effectiveness of the defender (i.e., plant personnel) across multiple intrusion 
scenarios

 Accurately accounting for performance decrements in the adversary seeking access to the facility

 Modeling consequences if access to the facility is gained.

The latter modeling consideration builds on the existing PRA and HRA models at the plant. 
Accurately modeling the defenders and adversaries requires observation and consideration of the PSFs 
associated with specific scenarios. Facility-specific observations provide a basis for this modeling.

HRA in practice is considered static, in that it only models a set of predefined scenarios, typically 
those determined to be most risk significant. Unfortunately, modeling a finite set of scenarios is only 
possible by focusing on errors of omission—failures to perform expected actions. Errors of omission are 
the basis for typical risk accident sequences at the plant, because it is considered unlikely that operators 
would deviate significantly from mandated procedures in the control room. Errors of commission—those 
things actively done at the plant that disrupt its function—either maliciously or unintentionally—
encompass a wider range of possible activities and outcomes than errors of omission. Modeling errors of 
commission with static HRA is a very labor-intensive task that often fails to anticipate every failure path 
that is possible. Dynamic HRA model considers multiple and emerging scenarios, thereby creating a 
distribution of outcomes that inform the overall risk. Building on dynamic HRA work being conducted 
for FLEX scenarios, a dynamic HRA model of defenders and adversaries will be created in EMRALD. 
This effort leverages recent efforts at Idaho National Laboratory to create realistic human performance 
models for balance-of-plant activities. Most HRA methods primarily address control room actions by 
licensed operators. In the EMRALD HRA models, activities outside the control room are modeled in the 
context of virtual human defenders and adversaries within a virtual environment. The permutations of 
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different scenarios will be modeled, considering especially the impacts of relevant PSFs on overall 
scenario outcomes. Modeling assumptions will be validated with plant personnel.

The product of this physical security HRA will be a more realistic assessment of the effectiveness of 
defensive personnel and insights on possible ways to decrease the success rate of adversaries. By tracing 
through possible effects beyond entry to the plant, the HRA modeling will allow identification of those 
areas of greatest risk to physical security breaches. These inputs will serve as ways to increase security 
margins and new opportunities to take credit for protection of the plant.

3.5 Force-on-Force Inspection

NRC has established a set of regulatory requirements for nuclear facilities to ensure that these 
facilities do not impose undue risk to the health and safety of the public, thereby providing reasonable 
assurance of adequate protection of public health and safety. The current body of NRC regulations and 
their implementation are largely based upon deterministic or prescriptive methods. These deterministic 
methods have been used to establish design and operational requirements necessary for obtaining 
regulatory approvals for construction and operation of nuclear facilities. Similarly, the deterministic or 
prescriptive approach has been used by NRC to establish the set of requirements and expectations for 
nuclear facility physical security.

The deterministic approach used for design and operational considerations establishes conservative 
requirements for engineering margin and quality assurance in design, manufacture, and construction. In 
addition, it requires assumptions relative to adverse conditions that can exist (e.g., equipment failures and 
human errors) and establishes a specific set of design basis events (DBEs). The deterministic approach 
then requires that the facility include safety systems capable of preventing or mitigating the consequences 
of those DBEs to protect public health and safety. Those structures, systems, and components (SSCs) 
necessary to defend against the DBEs are defined as "safety-related," and these SSCs are the subject of 
additional regulatory requirements intended to ensure that they are of high quality and reliability, and 
capable of performing their intended function during postulated design basis conditions. 

A risk-informed approach would modify this traditional deterministic approach by considering a 
broader set of potential challenges to plant safety (e.g., beyond DBE), providing a logical means for 
prioritizing these challenges based on risk significance, and considering a broader set of capabilities to 
respond to these challenges. In contrast to the deterministic approach, a risk-informed approach would 
address the impact of credible initiating events by assessing event frequency, mitigating system reliability 
and event consequences, and enabling treatment of SSCs in accordance with their relative risk-
significance over the lifetime of the facility. More specifically, a risk-informed approach consists of a 
categorization process to determine the risk significance of SSCs, determination of appropriate SSC 
requirements to maintain SSC functionality and reliability, and periodic assessments to make 
categorization and/or requirement adjustments based on operating experience and feedback, as needed. 
The overall result intended to be emphasis on risk-significant SSCs (i.e., those components most 
important to nuclear safety) that ensure safety while improving efficiency. Underlying risk assessment 
techniques utilized by a risk-informed approach would range from very simple and qualitative to more 
complex and quantitative. 

Using a risk-informed approach such as this to inform physical protection of nuclear facilities would 
not only prioritize challenges for the licensee based on risk significance, but would also result in an NRC 
inspection program focused on these priorities to assist licensees in mitigating these challenges, and a 
physical security inspection program consistent with other inspections within nuclear reactor regulation.
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Appendix A
Comparison of PIDAS Sensors

Active/

Passive

Covert/

Visible

LOS/

Terra

in

Volume

/In Line

Fence

Mounted/

Free

Standing/Inst

alled

Install

Cost

Advantages Disadvantages Maintenance Tech

Level

Testing

Time

Health

Monitoring

Mean Time

Between

Failure

Active Visible LOS Volume Free Standing High Large detection area,

Hard to bypass,

Medium NAR,

Weather, Small

animals, plant

growth in detection

path

High Skilled

techs

High Available High

Active Visible LOS Volume Free Standing High Large detection area for

hard to cover areas,

Easier installation

Medium NAR,

Weather, Small

animals, plant

growth in detection

path

High Skilled

techs

High High

Active Visible LOS Volume Free Standing High Large detection area for

hard to cover areas,

Easier installation

Sees movement thru

walls, Does not

work well with other

MW

Medium Reg techs Medium High

Active Visible LOS Volume Free Standing Low Low NAR, Large

interior detection area

Defeat one sensor

then sensor is

defeated

Low Reg techs Low Available High

Active Visible LOS Volume Free Standing Very

High

Early warning, Low

NAR

Operator overload Medium Skilled

techs

High Available High

Active Visible LOS Volume Free Standing High Reduce operator load,

Detect wide range of

movement, detect

movement that operator

can not detect

Weather Medium Skilled

techs

Medium Available High

Bistatic MW

Monostatic MW

Interior MW

Interior dual MW

and PIR

Radar

3D (Lidar)

Sensor

Microwave
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Active/

Passive

Covert/

Visible

LOS/

Terra

in

Volume

/In Line

Fence

Mounted/

Free

Standing/Inst

alled

Install

Cost

Advantages Disadvantages Maintenance Tech

Level

Testing

Time

Health

Monitoring

Mean Time

Between

Failure

Passive Visible Terrain Line Fence Mounted Low Easy installation, Fence

is existing

High NAR, Requires

robust fence

Medium Reg techs Medium Medium

Passive Visible Terrain Line Fence Mounted Low Easy installation, Fence

is existing

High NAR, Requires

robust fence

Medium Reg techs Medium Available Medium

Passive Visible Terrain Line Installed High Early warning, Low

NAR

Buried cable breaks Medium Reg techs Medium Available High

Passive Visible Terrain Line Fence Mounted Low Easy installation, Fence

is existing

High NAR, Requires

robust fence

Medium Reg techs Low Medium

Passive Visible Terrain Line Fence Mounted Medium Easy installation, Fence

is existing

High NAR, Requires

robust fence

Medium Reg techs Medium Available High

Active Visible Terrain Volume Fence

Mounted/Free

Standing

High Large detection area,

Hard to bypass,

High NAR, Weather,

Small animals, plant

growth in detection

path

Medium Reg techs High Medium

Passive Visible Terrain Line Fence

Mounted/Free

Standing

High Low NAR, Large

detection area, Hard to

bypass

Weather, Small

animals

Medium Reg techs Low Medium

Active Covert Terrain Volume Installed High Large detection area,

Hard to bypass

High NAR, must be

away from metal

Medium Reg techs High High

Active Visible NA Volume Fence

Mounted/Free

Standing

High Large detection area,

Hard to bypass

Low NAR, Weather,

Small animals

Medium Reg techs Low Available High

Coaxial

Fiber

E-Field

Taut Wire

Ported Coax

Wireless fence

detection

Fence
Electro-mech

Strain

Geophones

Sensor
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Active/
Passive

Covert/
Visible

LOS/
Terra

in

Volume
/In Line

Fence
Mounted/

Free

Standing/Inst
alled

Install
Cost

Advantages Disadvantages Maintenance Tech
Level

Testing
Time

Health
Monitoring

Mean Time
Between

Failure

Active Visible LOS Line Installed High Low NAR, Hard to

bypass

Weather, Small

animals

Medium Reg techs Low High

Passive Visible LOS Volume Installed Low Low NAR, Hard to

bypass

Weather, Small

animals, High Temp

Low Reg techs Low High

Passive Covert Installed Very

Low

Early warning. Low

NAR, Hard to bypass

Low Reg techs Low High

Passive Covert/Visi

ble

Installed Very

Low

Early warning. Low

NAR, Hard to bypass

Low Reg techs Low High

Passive Covert/Visi

ble

LOS Volume Installed Varies

low to

high

Digital provides better

images for many users,

more imaging options

Analog at EOL, less

options

Medium Reg techs Low Available Medium

Passive Visible Varies

low to

high

Allows review of past

events, Used for training,

face recognition

Operator overload,

date storage

Medium Reg techs Low Medium

Passive Visible Varies

low to

high

Reduce operator load,

Detect wide range of

movement, detect

movement that operator

can not detect

Weather, camera

shaking, requires

good image contrast,

no compression

Medium Reg techs Low Medium

Video
Cameras

DVR/NVR

Video Motion

Detection

Active

Passive

Doors and

Enclosures

Tamper SW

Balanced Mag SW

Infrared

Sensor
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Active/

Passive

Covert/

Visible

LOS/

Terra
in

Volume

/In Line

Fence

Mounted/
Free

Standing/Inst

alled

Install

Cost

Advantages Disadvantages Maintenance Tech

Level

Testing

Time

Health

Monitoring

Mean Time

Between
Failure

Active Visible LOS/Ter

rain

Volume Installed Varies

low to

high

Reduce operator load,

Detect wide range of

movement, detect

movement that operator

can not detect, Can stay

on station almost

indefensibly, Can be

deployed on intrusion

event

Requires good

camera for image

contrast, used in

conjunction with

bullet detection

Medium No skilled

pilot

Medium Available Medium

Active Visible LOS/Ter

rain

Volume Free Standing Varies

low to

high

Reduce operator load,

Detect wide range of

movement, detect

movement that operator

can not detect

Weather, requires

good camera for

image contrast,

limited flight time

Medium skilled

pilot

Medium Available Medium

Active Visible LOS/Ter

rain

Volume Free Standing High Prevent aerial attacks,

Capture drone for

analysis

FAA regulations,

Legal consequences

High skilled

pilot

Medium Available Medium

Active Visible Free Standing Varies

low to

high

Reduce testing time and

manpower

FAA regulations,

Legal consequences

Medium skilled

pilot

Available Medium

Unmanned

Aerial Vehicle

Surveillance Drones

Tethered

Surveillance Drones

Defense Drones

PPS Testing Drones

Sensor
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